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Previous methods for determining photonic quasicrystal �PQC� spectra have relied on the use of large
supercells to compute the eigenfrequencies and/or local density of states. In this paper, we present a method by
which the energy spectrum and the eigenstates of a PQC can be obtained by solving Maxwell’s equations in
higher dimensions for any PQC defined by the standard cut-and-project construction, to which a generalization
of Bloch’s theorem applies. In addition, we demonstrate how one can compute band structures with defect
states in the same higher-dimensional superspace. As a proof of concept, these general ideas are demonstrated
for the simple case of one-dimensional quasicrystals, which can also be solved by simple transfer-matrix
techniques.
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I. INTRODUCTION

We propose a computational method to solve for the spec-
tra and eigenstates of quasicrystalline electromagnetic struc-
tures by directly solving a periodic eigenproblem in a higher-
dimensional lattice. Such photonic quasicrystals �PQCs�
have a number of unique properties compared to ordinary
periodic structures,1–23 especially in two or three dimensions
where they can have greater rotational symmetry and, there-
fore, offer some hope of complete photonic band gaps with
lower index contrast6,24–26 than the roughly 2:1 contrast cur-
rently required for periodic structures.27 However, the study
of two- and three-dimensional photonic quasicrystals has
been hampered by the computational difficulty of modeling
aperiodic structures, which has previously required large “su-
percell” calculations that capture only a portion of the infi-
nite aperiodic lattice. Our method, in contrast, captures the
entire infinite aperiodic structure in a single higher-
dimensional unit cell, and we believe that this approach will
ultimately be much more computationally tractable for two-
and three-dimensional quasicrystals. The idea that many qua-
sicrystals can be constructed by an irrational slice of a
higher-dimensional lattice is well known,28–30 and, in fact, is
the most common formulation of quasicrystals in two and
three dimensions,31–33 but the possibility of direct numerical
calculations within the higher-dimensional space seems to
have been little explored outside of some tight-binding cal-
culations in quantum systems.34,35 As a proof of concept, we
demonstrate a first implementation of the technique applied
to one-dimensional quasicrystals, such as the well-known Fi-
bonacci structure. Not only can we reproduce the spectrum
from transfer-matrix calculations, but we also show that the
higher-dimensional picture provides an interesting way to vi-
sualize the eigenmodes and compute defect states in the in-
finite aperiodic structure.

There have been several previous numerical approaches
to simulating quasicrystal structures in electromagnetism and
quantum mechanics. In one dimension, a typical quasicrystal
is an aperiodic sequence of two or more materials, deter-

mined either by a slice of a higher-dimensional lattice29 or by
some “string concatenation” rule.28 In either case, efficient
2�2 transfer-matrix methods are available that allow one to
quickly compute the transmission spectra and density of
states for supercells consisting of many thousands of
layers.36,37 Two- and three-dimensional quasicrystals are al-
most always defined as an irrational slice �i.e., incommensu-
rate Miller indices� of a higher-dimensional lattice; for ex-
ample, the famous Penrose tiling can be viewed as a two-
dimensional slice of a five-dimensional cubic lattice or of a
four-dimensional root lattice A4.30 In such cases, supercell
computations of a finite portion of the infinite aperiodic
structure �or a rational approximant thereof29,36� require
slower numerical methods, most commonly finite-difference
time-domain �FDTD� simulations13,19,38 or plane wave
expansions.39,40 Unfortunately, these methods become very
expensive for large supercells, nearly prohibitively so for
three-dimensional quasicrystals—there have been experi-
ments for three-dimensional �3D� PQCs,32,33 but as yet few
theoretical predictions.41,42 With FDTD methods, for ex-
ample, the PQC local density of states is typically integrated
in a Monte Carlo fashion via random sources or initial
conditions,8,11,23 but many simulations are required to sample
all possible modes in a large supercell. Also, the finite do-
main of a supercell becomes even more significant in higher
dimensions, where a tractable supercell is necessarily
smaller, as there can be localized states13,17,19,23 whose pres-
ence is dependent on the particular region of the PQC con-
sidered. Our method of computing the spectrum directly in
the higher-dimensional unit cell, on the other hand, requires
no supercell to capture the infinite aperiodic structure—it
uniformly samples �up to a finite resolution� every possible
supercell of the infinite quasicrystal, rather than any particu-
lar subsection. The influence of finite resolution on the con-
vergence of the spectrum can be systematically understood:
one is not “missing” any part of the quasicrystal, so much as
resolving the entire quasicrystal with lower resolution.

The structure of this paper is as follows: In Sec. II, we
review the “cut-and-project” method for defining a PQC as a
slice of a higher-dimensional lattice, followed in Sec. III by a
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description of our computational method in the higher-
dimensional lattice. There, we describe the extension of
Maxwell’s equations to higher dimensions and also describe
its solution in terms of a higher-dimensional Bloch plane
wave expansion. As a proof of concept, we present a se-
quence of one-dimensional examples in Sec. IV. First, we
compare results for a one-dimensional “Fibonacci sequence”
with standard one-dimensional transfer-matrix techniques.
Second, as mentioned above, we demonstrate how one can
use the same technique to study defects in the quasicrystal,
as demonstrated in the one-dimensional “Fibonacci” ex-
ample. Finally, we demonstrate the ease with which one can
construct and explore different quasicrystals by continuously
varying the cut angle.

II. QUASICRYSTALS VIA CUT-AND-PROJECT

Given a periodic lattice, any lower-dimensional cross sec-
tion of that lattice may be either periodic or quasiperiodic,
depending on the angle of the cross section. For example, the
periodic two-dimensional �2D� cross sections of a 3D crystal
are the lattice planes, defined in crystallography by integer
Miller indices. If the Miller indices have irrational ratios, on
the other hand, the cross section is aperiodic but still has
long-range order because of the underlying higher-
dimensional periodicity. This is what is known as a cut-and-
project method of defining a quasicrystalline structure: as a
slice of a periodic structure in a higher-dimensional
“superspace.”28,29 �For a thorough discussion of quasicrystals
via cut-and-project, see Ref. 28.� Cut-and-project defines a
specific class of quasicrystals; equivalently, and more ab-
stractly, cut-and-project corresponds to structures whose
Fourier transform has support spanned by a finite number of
reciprocal basis vectors �the projection of the reciprocal lat-
tice vectors from higher dimensions�.28,31 This class includes
most commonly considered quasicrystals in two or three di-
mensions, including the Penrose tiling30 and the 2D Fi-
bonacci quasicrystal,43 as well as many one-dimensional
quasicrystals including a one-dimensional �1D� Fibonacci
structure.

For example, consider the Fibonacci PQC in one dimen-
sion formed from two materials �A=4.84 and �B=2.56 in
layers of thickness A and B, respectively, similar to a recent
experimental structure.7 The Fibonacci structure S is then
defined by the limit n→� of the string-concatenation rule
Sn=Sn−2Sn−1 with starting strings S0=B and S1=A,7 generat-
ing a sequence BABAABABAABA. . .. In the case where B /A
is the golden ratio �= �1+�5� /2, exactly the same structure
can be generated by a slice of a two-dimensional lattice as
depicted in Fig. 1.28 The slice is at an angle � with an irra-
tional slope tan �=1 /�, and the unit cell of the 2D lattice is
an A�A square at an angle � in a square lattice with period
�A+B�sin �=a. Because the slope is irrational, the offset or
intercept of the slice is unimportant: any slice at an angle �
intercepts the unit cell at infinitely many points, filling it
densely.

For thickness ratios B /A��, the Fibonacci structure can-
not be constructed by cut-and-project, and, in general, string-
concatenation rules can produce a different range of struc-

tures �such as the Thue-Morse PQC44� than cut-and-project.
This is partly a question of definition—some authors reserve
the term “quasicrystal” for cut-and-project structures.30 In
any case, cut-and-project includes a wide variety of aperiodic
structures, including most of the structures that have been
proposed in two or three dimensions �where they can be
designed to have n-fold rotational symmetry for any n�, and
are the class of quasicrystals that we consider in this paper.

In general, let d�3 be the number of physical dimensions
of a quasicrystal structure generated by a d-dimensional
“slice” of an n-dimensional periodic structure �n�d�. De-
note this slice by X �the physical space� with coordinates x
�Rd, and denote the remaining n−d coordinates by y
�Rn−d in the “unphysical” space Y �so that the total
n-dimensional superspace is Z=X � Y�. The primitive lattice
vectors Ri�Z define the orientation of the lattice with re-
spect to the slice �rather than vice versa�, with corresponding
primitive reciprocal vectors Gi defined by the usual Ri ·G j
=2�	ij.

28 �The concept of an “irrational slice” is commonly
used in the quasicrystal literature. However, a general defi-
nition of what is meant by an irrational slice seems difficult
to find, and less evident in dimensions d�2. A more precise
definition of irrational slice in general dimensions and a
proof that it is dense in the unit cell is given in the Appen-
dix.�

The physical dielectric function ��x� is then constructed
by starting with a periodic dielectric function ��x ,y� in the
superspace and evaluating it at a fixed y �forming the slice�.
Because an irrational slice is dense in the unit cell of the
superspace,28 it does not matter what value of y one chooses,
as discussed below. In principle, one could define the unit
cell of � in the superspace to be any arbitrary n-dimensional
function, but in practice, it is common to “decorate” the
higher-dimension unit cell with extrusions of familiar
d-dimensional objects.28,30 More precisely, cut-and-project
commonly refers to constructions where a set of lattice
points within a finite window of the cut plane is projected
onto the cut plane, and this is equivalent to a simple cut

φ
X

Y

ε =4.84A

ε =2.56B

A

B

FIG. 1. Unit cell of the Fibonacci superspace dielectric. The
physical dielectric is obtained by taking a slice at an angle tan �
=�. Black and white are the dielectric constants of the structure
factor material and air, chosen to be �=4.84 and �=2.56,
respectively.
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where objects at the lattice points are extruded in the y di-
rection by the window width.28 In particular, the extrusion
window is commonly an inverted projection �shadow� of the
unit cell onto the y directions,28 although this is not the case
for the Fibonacci construction of Fig. 1.

�Note that the higher-dimensional lattice need not be hy-
percubic. For example, the Penrose tiling can be expressed as
a two-dimensional slice of either a five-dimensional hyper-
cubic lattice or of a nonorthogonal four-dimensional root lat-
tice A4.30 For computational purposes, the lower the dimen-
sionality, the better.�

III. COMPUTATIONS IN HIGHER DIMENSIONS

Although the cut-and-project technique is a standard way
to define the quasicrystal structure, previous computational
studies of photonic quasicrystals then proceeded to simulate
the resulting structure only in the projected �d-dimensional�
physical space. Instead, it is possible to extend Maxwell’s
equations into the periodic n-dimensional superspace, where
Bloch’s theorem applies to simplify the computation. By
looking at only the unit cell in n dimensions, one can capture
the infinite d-dimensional quasicrystal. Our development of
this technique was inspired by earlier research on analogous
electronic quasicrystals that applied a tight-binding method
in two dimensions to compute the spectrum of a one-
dimensional electronic quasicrystal.34,35

Let us start with Maxwell’s equations in the physical
space X for the quasicrystal ��x ,y� at some fixed y �that is, y
is viewed as a parameter, not a coordinate�. Maxwell’s equa-
tions can be written as an eigenproblem for the harmonic
modes H�x ,y�e−i
t,45 where again y appears as a parameter:

�x �
1

��x,y�
�x � H = �


c
�2

H , �1�

where �x� denotes the curl with respect to the x coordi-
nates. Assuming that the structure is quasicrystalline, i.e.,
that X is an irrational slice of the periodic superspace Z, then

 should not depend on y.34 The reason is that y only deter-
mines the offset of the “initial” slice of the unit cell �for x
=0�, but as we reviewed above, the slice �considered in all
copies of the unit cell� fills the unit cell densely. Therefore,
any change of y can be undone, to arbitrary accuracy, merely
by offsetting x to a different copy of the unit cell. An offset
of x does not change the eigenvalues 
, although, of course,
it offsets the eigenfunctions H.

The fact that 
 is independent of y allows us to reinterpret
Eq. �1�, without actually changing anything: we can think of
y as a coordinate rather than a parameter, and the operator on
the left-hand side as an operator in d-dimensional space.
Note that H is still a three-component vector field, and
�x� is still the ordinary curl operator along the x directions,
so this is not so much a higher-dimensional version of Max-
well’s equations as an extension of the unmodified ordinary
Maxwell’s equations into a higher-dimensional parameter
space. The y coordinate appears in the operator only through
�. Because 
 is independent of y, i.e., it is just a number
rather than a function of the coordinates, Eq. �1� in higher

dimensions is still an eigenproblem, and its spectrum
of eigenvalues 
 is the same as the spectrum of the
d-dimensional quasicrystal, since the equations are identical.
The physical solution is obtained by evaluating these higher-
dimensional solutions at a fixed y, say, y=0 �where a differ-
ent y merely corresponds to an offset in x as described
above�.

For a real, positive �, both the physical operator and the
extended operator in Eq. �1� are Hermitian and positive
semidefinite, leading to many important properties such as
real frequencies 
.45

A. Bloch’s theorem and numerics for quasicrystals

Because the superspace eigenproblem is periodic, Bloch’s
theorem applies: the eigenfunctions H�x ,y� can be written in
the Bloch form h�z�eik·z, where h is a periodic function de-
fined by its values in the unit cell, and k is the n-dimensional
Bloch wave vector.45

Here, k determines the phase relationship between H in
different unit cells of the superspace, but it does not have a
simple interpretation once the solution is projected into
physical space. The reason is that h, viewed as a function of
x, is again only quasiperiodic: translation in x “wraps” the
slice into a different portion of the unit cell, so both h and
eik·z change simultaneously, and the latter phase cannot be
easily distinguished. This prevents one from defining a use-
ful phase or group velocity of the PQC modes.

The key point is that Bloch’s theorem reduces the eigen-
problem to a finite domain �the n-dimensional unit cell�,
rather than the infinite domain required to describe the qua-
sicrystal solutions in physical space. This means that stan-
dard numerical methods to find the eigenvalues of differen-
tial operators are immediately applicable. For example, since
the solution h is periodic, one can apply a plane wave ex-
pansion method46 for h:

h�z� = �
G

h̃GeiG·z, �2�

where the summation is over all n-dimensional reciprocal
lattice vectors G. Because the curl operations only refer to
the x coordinates, �x�h is replaced by a summation over

gx� h̃G, where gx denotes G projected into X. The resulting

eigenproblem for the Fourier coefficients h̃ �once they are
truncated to some wave vector cutoff� can be computed ei-
ther by direct dense-matrix methods47 or, more efficiently, by
iterative methods exploiting fast Fourier transforms.46 In the
present paper, we do the former, which is easy to implement
as a proof of concept, but for higher-dimensional computa-
tions, an iterative method will become necessary.

We should also remind the reader that there is a constraint
�x ·H=0 on the eigenfunctions, in order to exclude unphysi-
cal solutions with static magnetic charges. In a plane wave

method, this leads to a trivial constraint �kx+gx� · h̃=0, again
with k and G projected into X.

B. Spectrum of the quasicrystal

With a familiar eigenproblem arising from Bloch’s theo-
rem, such as that of a periodic physical structure, the eigen-
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values form a band structure: discrete bands 
n�k� that are
continuous functions of k, with a finite number of bands in
any given frequency range.48 For a finite-resolution calcula-
tion, one obtains a finite number of these bands 
n with some
accuracy that increases with resolution, but even at low reso-
lutions, the basic structure of the low-frequency bands is
readily apparent. The eigenvalues of the higher-dimensional
quasicrystal operator of Eq. �1�, on the other hand, are quite
different.

The underlying mathematical reason for the discrete band
structure of a physical periodic structure is that the Bloch
eigenoperator for a periodic physical lattice, ��+ ik��

1
� ��

+ ik��, is the inverse of a compact integral operator corre-
sponding to the Green’s function, and hence, the spectral
theorem applies.49 Among other things, this implies that the
eigenvalues at any given k for a finite unit cell form a dis-
crete increasing sequence, with a finite number of eigenval-
ues below any finite 
. The same nice property does not hold
for the operator extended to n dimensions, because along the
y directions, we have no derivatives, only a variation of the
scalar function �. Intuitively, this means that the fields can
oscillate very fast along the y directions without necessarily
increasing 
, allowing one to have infinitely many eigen-
functions in a finite bandwidth. More mathematically, an
identity operator is not compact and does not satisfy the
spectral theorem,49 and since the operator of Eq. �1� is lo-
cally the identity along the y directions, the same conclusion
applies. This means that, when the y direction is included as
a coordinate, it is possible to get an infinite number of bands
in a finite bandwidth at a fixed k.

In fact, as we shall see below, this is precisely what hap-
pens, and moreover, it is what must happen in order to re-
produce the well-known properties of quasicrystal spectra. It
has been shown that quasicrystal spectra can exhibit a fractal
structure,28 with infinitely many gaps �of decreasing size� in
a finite bandwidth, and such a structure could not arise from
an ordinary band diagram with a finite number of bands in a
given bandwidth. Of course, once the unit cell is discretized
for numerical computation, the number of degrees of free-
dom and, hence, the number of eigenvalues are finite. How-
ever, as the resolution is increased, not only do the maximum
frequency and the accuracy increase as for an ordinary com-
putation, but also the number of bands in a given bandwidth
increases. Thus, as the resolution is increased, more and

more of the fractal structure of the spectrum is revealed.

IV. ONE-DIMENSIONAL RESULTS

As a proof of concept implementation of cut-and-project,
we construct a Fibonacci quasicrystal in Sec. IV A using the
projection method described above, compute the band struc-
ture as a function of the projected wave vector kx, and com-
pare to a transfer-matrix calculation of the same quasicrystal
structure. We also demonstrate the field visualization enabled
by the projection method, both in the superspace �n dimen-
sions� and in the physical space �d dimensions�. In Sec.
IV B, we demonstrate how this method can accommodate
systems with defects. Finally, we explore several one-
dimensional quasicrystal configurations in Sec. IV C by
varying the cut angle �.

A. Fibonacci quasicrystal

1. Spectrum

We solved Eq. �1� numerically using a plane wave expan-
sion in the unit cell of the 2D superspace, as described
above, for the 1D Fibonacci quasicrystal structure depicted
in Fig. 1. The resulting band diagram is shown in Fig. 2�left�,
along with a side-by-side comparison of the local density of
states in Fig. 2�right� calculated using a transfer-matrix ap-
proach with a supercell of 104 layers.50 The two calculations
show excellent agreement in the location of the gaps, except
for one or two easily identified spurious bands inside some
of the gaps, which are discussed in further detail below �Sec.
IV A 3�. The most important feature of Fig. 2�left� is the
large number of bands even in the finite bandwidth 

� �0,0.4�, with the number of bands increasing proportional
to the spatial resolution �plane wave cutoff�. This is precisely
the feature predicted abstractly above, in Sec. III B: at a low
resolution, one sees only the largest gaps, and at higher reso-
lutions, further details of the fractal spectrum are revealed as
more and more bands appear within a given bandwidth, very
different from calculations for periodic physical media.
These features are illustrated in Fig. 3. The important physi-
cal quantity is not so much the band structure, since k has no
simple physical meaning as discussed previously, but, rather,
the density of states formed by projecting the band structure
onto the 
 axis. In this density of states, the small number of
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FIG. 2. Left: Frequency spec-
trum 
 of the Fibonacci quasic-
rystal vs “wave vector” kx. The
blue lines indicate spurious states
which arise due to finite-
resolution effects �see text�. Right:
Corresponding density of states
��
� computed using a transfer-
matrix technique with a supercell
of 104 layers.
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spurious bands within the gaps, which arise from the dis-
cretization as discussed below, plays no significant role: the
density of states is dominated by the huge number of flat-
bands �going to infinity as the resolution is increased�, and
the addition of one or two spurious bands is negligible.

2. Visualizing the eigenmodes in superspace

Computing the eigenmodes in the higher-dimensional su-
perspace immediately suggests a visualization technique: in-
stead of plotting the quasiperiodic fields as a function of the
physical coordinates x by taking a slice, plot them in the
two-dimensional superspace. This has the advantage of re-
vealing the entire infinite aperiodic field pattern in a single
finite plot.34 Such plots are also used below to aid in under-
standing the spurious modes localized at staircased inter-
faces. A typical extended mode profile is shown in Fig. 4,
plotted both as a function of the physical coordinate x for a
large supercell and also in the unit cell of the superspace
�inset�. In the inset superspace plot, one can clearly see the
predicted field oscillations perpendicular to the slice plane,
as well as a slower oscillation rate �inversely proportional to
the frequency� parallel to the slice. In the plot versus x, one
can see the longer-range quasiperiodic structure that arises
from how the slice wraps around the unit cell in the super-
space. The factor of 3–4 long-range variations in the field
amplitude are suggestive of the critically localized states
�power-law decay� that one expects to see in such
quasicrystals.7,51,52

By visualizing the bands in the higher-dimensional do-
main, we can demonstrate the origin of the quasicrystal band
gap in an interesting way. In an ordinary photonic crystal, the
gap arises because the lowest band concentrates its electric-
field energy in the high-dielectric regions �due to the varia-
tional principle�, while the next band �above the gap� is
forced to have a nodal plane in these regions �due to
orthogonality�.45 A very similar phenomenon can be ob-
served in the quasicrystal eigenmodes when plotted in the
superspace. In particular, Fig. 5 displays the electric-field

energy distribution of the band-edge states just above and
below gaps 1 and 2 of Fig. 2. Very similar to an ordinary
two-dimensional photonic crystal, the bands just below the
gaps are peaked in the dielectric squares, whereas the upper-
edge bands have a nodal plane in these squares. If the same
fields were plotted only in the physical coordinate space, the
position of the peaks and nodes would vary between adjacent
layers and this global pattern �including the relationship be-
tween the two gaps� might not be apparent. In contrast to a
two-dimensional photonic crystal, on the other hand, the
quasicrystalline field pattern has fractal oscillations in the
superspace.
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FIG. 3. �Color online� Integrated density of states �DOS� vs
band index �normalized by resolution� for various resolutions. The
dashed red, diamond blue, and solid black lines denote resolutions
of 20, 50, and 200, respectively.
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FIG. 4. �Color online� Plot of the magnetic field amplitude 	Hz	
for a band-edge state taken along a slice of the two-dimensional
superspace �in the � direction�. Inset: Two-dimensional superspace
field profile �red/white/blue indicates positive/zero/negative
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FIG. 5. �Color online� Electric field energy distribution of the
band-edge states of gaps 1 and 2 in Fig. 2. Although they have a
complex small-scale structure, the large-scale variation is easily un-
derstood in terms of the structure of the superspace.
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3. Spurious modes

As the wave vector k varies, most of the bands in the
spectrum of Fig. 2 are flat, except for certain modes �high-
lighted in blue� which appear to cross the band gaps rela-
tively quickly, as shown in Fig. 6. These are the spurious
modes, as explained below.

In fact, a simple argument shows that, in the limit of
infinite resolution, the physical spectrum cannot depend on k
and, hence, any strongly k-dependent band must be a nu-
merical artifact. First, 
 cannot depend on the components of
k in the unphysical directions Y, because the Maxwell op-
erator of Eq. �1� has no y derivatives �equivalently, any
phase oscillations in y commute with the operator�. Second,

 cannot depend on the components of k in the physical
directions X either. The reason is that, from Bloch’s theorem,
k and k+G give the same eigensolutions for any reciprocal
lattice vector G, and the projections of the reciprocal lattice
vectors are dense in X for a quasicrystal.

These “spurious” bands that appear arise from the dis-
cretization of the dielectric interfaces parallel to the slice
direction. Because the slice is at an irrational angle, it will
never align precisely with a uniform grid, resulting in inevi-
table staircasing effects at the boundary. With ordinary elec-
tromagnetic simulations, these staircasing effects can de-
grade the accuracy,53 but here the lack of derivatives
perpendicular to the slice allows spurious modes to appear
along these staircased edges �there is no frequency penalty to
being localized perpendicular to the slice�. Indeed, if one
looks at the field patterns for the spurious modes as a func-
tion of kx �shown in Fig. 6�, one sees that the field intensity
is peaked along the slice-parallel dielectric interfaces. Be-
cause they are localized to these interfaces and are, therefore,
dominated by the unphysical staircasing, the spurious modes
behave quite differently from the “real” solutions and are
easily distinguished qualitatively and quantitatively �e.g., via

their k dependence�. Most importantly, as the resolution is
increased, the number of spurious modes in a given gap does
not increase like all of the other bands, because the thickness
of the staircased interface region decreases proportional to
the resolution. This makes the gaps in the band structure
obvious: here, they are the only frequency ranges for which
the number of eigenvalues does not increase with resolution.
Equivalently, as noted above, the contribution of the spurious
bands to the density of states is asymptotically negligible as
resolution is increased.

B. Defect modes

Much of the interest in quasicrystal band gaps, similar to
the analogous case of band gaps in periodic structures, cen-
ters around the possibility of localized states: by introducing
a defect in the structure, e.g., by changing the thickness of a
single layer, one can create exponentially localized states in
the gap.4,54 In periodic systems, because such defects break
the periodicity, they necessitate a larger computational cell,
or supercell, that contains many unit cells. In quasicrystal
systems, once the gaps are known, on the other hand, defect
states are arguably easier to compute than the gaps of the
infinite structure, because an exponentially localized defect
mode can be computed accurately with a traditional supercell
and the infinite quasicrystal per se need not be included.
Nevertheless, the superspace approach allows one to com-
pute defect modes using the same higher-dimensional unit
cell, which demonstrates the flexibility of this approach and
provides an interesting �but not obviously superior� alterna-
tive to traditional supercells for defect states.

Ideally, if one had infinite spatial resolution, a defect in
the crystal would be introduced as a very thin perturbation
parallel to the slice direction. As the thickness of this pertur-
bation goes to zero, it intersects the physical slice at greater
and greater intervals in the physical space, corresponding to
localized defects that are separated by arbitrarily large dis-
tances. In practice, of course, the thickness of the perturba-
tion is limited by the spatial resolution, but one can still
obtain defects that are very widely separated—since the as-
sociated defect modes are exponentially localized, the cou-
pling between the defects is negligible. In other words, one
effectively has a very large supercell calculation, but ex-
pressed in only the unit cell of the higher-dimensional lattice.

As an example, we changed an �=2.56 layer to �=�d at
one place in the Fibonacci quasicrystal. The corresponding
superspace dielectric function is shown in Fig. 7, where the
defect is introduced as a thin �0.02a� strip of �d parallel to
the slice direction. We compute the band structure as a func-
tion of the defect dielectric constant �d, varying it from the
normal dielectric �d=2.56 up to �d=11. The thickness of the
defect in the unphysical direction was fixed to be 
0.02. The
reason for this is that the defect layer must be greater than
1 pixel thick in the Y directions in order to avoid staircasing
effects in the spectrum. The resulting eigenvalues as a func-
tion of �d are shown in Fig. 8 for two different spatial reso-
lutions of 50 �blue� and 100 �red� pixels /a. When the reso-
lution is 50, the defect is only 1 pixel thick; the discretization
effects might be expected to be large, although the frequency
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FIG. 6. �Color online� Enlarged view of the Fibonacci spectrum
�Fig. 2� showing a gap with a spurious band crossing it. Insets show
the magnetic field 	Hz	 for the spurious band at various kx—the
localization of this mode around the X-parallel edges of the dielec-
tric indicates that this is a discretization artifact.
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is within about 2% of the higher-resolution calculation. At
the higher resolution, the frequency of the mode is converg-
ing �it is within 0.3% of a resolution-200 calculation, not
shown�. However, at the higher resolution, there is a second,
spurious mode due to the finite thickness �2 pixels� of the
defect layer—this spurious mode is easily identified when
the field is plotted �Fig. 9 �bottom��, because it has a sign
oscillation perpendicular to the slice �which would be disal-
lowed if we could make the slice infinitesimally thin�.

The defect modes for the resolution 100 are plotted in Fig.
9 for both the real and the spurious modes versus the physi-
cal coordinate �x� and also in the superspace unit cell �in-
sets�. When plotted versus the physical coordinate x on a
semilogarithmic scale, we see that the modes are exponen-
tially localized as expected. The defect mode appears at mul-
tiple x values �every �20a on average� because the defect
has a finite thickness—the physical slice intersects it infi-

nitely many times �quasiperiodically�, as discussed above.
The spurious mode �bottom panel� is also exponentially lo-
calized; it has a sign oscillation perpendicular to the slice
direction �inset� which causes it to have additional phase
differences between the different defects.

Nevertheless, as emphasized above, we feel that the main
advantages of the superspace approach are for studying the
gaps and modes of the infinite, defect-free quasicrystal rather
than for localized defect modes.

C. Continuously varying the cut angle

The cut-and-project construction of quasicrystals provides
a natural way to parametrize a family of periodic and quasi-
periodic structures, via the cut angle �. It is interesting to
observe how the spectrum and gaps then vary with �.

As � is varied continuously from 0° to 45°, the structures
vary from period a to quasiperiodic lattices �for tan � irra-
tional� to long-period structures �tan � rational with a large
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FIG. 7. Dielectric for the Fibonacci chain with �=2.56 �bottom
left�, and a defect—an additional �d=8.0 layer; shown in gray.
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denominator� to a period a�2 crystal. As we change �, we
rotate the objects in the unit cell, so that they are always
extruded along the y direction with a length equal to the
projection of the unit cell onto y �a�sin �+cos ���, corre-
sponding to the usual cut-and-project construction.28 In this
case, the spectrum varies continuously with �, where the
rational tan � corresponds to “rational approximants” of the
nearby irrational tan �.29,31 For a general unit cell with a
rational tan �, the physical spectrum might depend on the
slice offset y and, hence, different from the total superspace
spectrum, but this is not the case for dielectric structures like
the one here, which satisfy a “closeness” condition29 �the
edges of the dielectric rods overlap when projected onto the
Y direction�. This makes the structure y independent even for
rational slices.29 The resulting structures are shown in the
bottom panel of Fig. 10 for three values of �.

The corresponding photonic band gaps are shown in the
top panel of Fig. 10 as a continuous function of �. Only the
largest gaps are shown, of course, since we are unable to
resolve the fractal structure to arbitrary resolution. As might
be expected, there are isolated large gaps at �=0° and �
=45° corresponding to the simple ABAB. . . periodic struc-
tures at those angles �with period a and a /�2, respectively;
the latter resulting from two layers per unit cell�. The �
=45° gap is at a higher frequency because of its shorter
period, but, interestingly, it is not continuously connected to
the �=0° gap.

The reason for this is that the two gaps are dominated by
different superspace reciprocal lattice vectors: �1,0� ·2� /a
for �=0°, and �1,1� ·2� /a for �=45°. �In fact, it is possible
to calculate, to first order, the locations of the gaps using the
dynamic structure factor S�k ,
� obtained from the projec-
tion of the superspace lattice.55� For intermediate angles, a
number of smaller gaps open and then close. If we were able
to show the spectrum with higher resolution, we would ex-
pect to see increasing numbers of these smaller gaps open-
ing, leading to the well-known fractal structure that arises,
e.g., for the Fibonacci crystal.

There is a strong similarity between the gap structure
above �Fig. 10� and the well-known Hofstadter butterfly
spectrum.56 This resemblance is a consequence of the math-
ematical correspondence between quasiperiodic Maxwell
equations and the equations of motion in Hofstadter’s
problem.52 In particular, a comparison of both equations
shows that the magnetic flux through the lattice in Hof-
stadter’s problem plays precisely the same role as the slope

of the cut plane tan � in ours, and a similar correspondence
was used to experimentally reproduce Hofstadter’s
butterfly.57

V. CONCLUDING REMARKS

We have presented a numerical approach to computing
the spectra of photonic quasicrystals by directly solving
Maxwell’s equations extended to a periodic unit cell in
higher dimensions, allowing us to exploit Bloch’s theorem
and other attractive properties of computations for periodic
structures. In doing so, we extended the conceptual approach
of cut-and-project techniques, which were developed as a
way to construct quasicrystals, into a way to simulate quasi-
crystals. Compared to traditional supercell techniques, this
allows us to capture the entire infinite aperiodic quasicrystal
in a single finite computational cell, albeit at only a finite
resolution. In this way, the single convergence parameter of
spatial resolution replaces the combination of resolution and
supercell size in traditional calculations, in some sense uni-
formly sampling the infinite quasicrystal. The resulting com-
putations, applied to the test case of a Fibonacci quasicrystal,
display the unique features of quasicrystals in an unusual
fashion, in terms of higher-dimensional band structures and
visualization techniques. This technique also allows defects
and variation of cut angle �continuously varying between
periodic and aperiodic structures� in a straightforward way.

In future work, we plan to apply this approach to model-
ing higher-dimensional quasicrystal structures, such as the
Penrose30 and 2D Fibonacci tilings,43 where computing the
spectrum is currently more challenging using existing super-
cell techniques. To make a higher-dimensional superspace
calculation practical, one must use iterative eigensolver
methods46,58 rather than the simple dense-matrix techniques
employed for our test case. Iterative techniques are most ef-
ficient for computing a few eigenvalues at a time, and so it
will be useful to employ iterative methods designed to com-
pute “interior” eigenvalues,46,58 allowing one to search di-
rectly for large gaps without computing the lower-lying
modes. Alternatively, numerical techniques have been devel-
oped, based on filter-diagonalization methods, to directly ex-
tract the spectrum of many eigenvalues without computing
the corresponding eigenvectors.59
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APPENDIX

In this appendix, we give an explicit derivation of the fact
that an “irrational” slice densely fills the superspace unit cell,
or, rather, a definition of the necessary conditions to be an
irrational slice. These concepts are widely used in the quasi-
crystal literature, but a precise definition seems hard to find
�one commonly requires that all of the Miller indices have
incommensurate ratios, but this condition is stronger than
necessary�.

Without loss of generality, we can consider the unit cell in
the superspace Z=Rn to be the unit cube �related to any
lattice by an affine transformation�, with lattice vectors along
the coordinate directions �Fig. 11�. The physical slice X is
d-dimensional, and it will be convenient to write the coordi-
nates of a vector z as z= �s1 , . . . ,sd , t1 , . . . , tn−d�= �s , t�. By

taking every coordinate modulo 1, we can map X to a set X̄
consisting of X’s intersection with each unit cell. We wish to

show necessary and sufficient conditions for X̄ to densely fill
the unit cell.

Assuming that the slice is not orthogonal to any of the
coordinate axes �as, otherwise, it would clearly not densely
fill the unit cell�, we can parametrize the points z of X so that
the last n−d coordinates �t1 , . . . , tn−d� are written as a linear
function t�s1 , . . .sd�� t�s� of the first d coordinates.

Consider the set T in Rn−d formed by the t�s� coordinates
of X when the components of s take on integer values. This is

a subset of X, and the corresponding set T̄ formed by taking

t�T modulo 1 is a subset of X̄. The key fact is that X̄ is

dense in the n-dimensional unit cell if and only if T̄ is dense
in the �n−d�-dimensional unit cell, and this is the case that
we will analyze. This equivalence follows from the fact that

X̄ is simply T̄ translated continuously along the slice direc-

tions �every point in X̄ is related to a point in T̄ by a simple
projection�. The set T is a lattice in Rn−d consisting of all
integer linear combinations of the basis vectors tk= t�sj

=	 jk�, since t�s� is a linear function.
For each basis vector tk, it is a well-known fact60 that if it

consists of m incommensurate irrational components, the set
of integer multiples �tk modulo 1 will densely fill an
m-dimensional slice of the unit cell. More precisely, write
tk=� j=1,. . .,mk

�k
jbk

j +qk, where the bk
j and qk have purely ratio-

nal components and the 
� j� are incommensurate irrational
numbers, and mk is, therefore, the number of incommensu-
rate irrational components of tk. Then the set of integer mul-
tiples of tk modulo 1 densely fills an mk-dimensional slice of
the unit cell of Rn−d. The basis vectors of this slice are pre-
cisely the vectors bk

j , which are rational and, therefore, com-
mensurate with the basis vectors of Rn−d, while the vector qk
is simply a rational shift. This slice, therefore, cuts the unit
cell of Rn−d a finite number of times.

The set T̄ is then obtained as the direct sum of these dense
slices for all n−d vectors tk. This is then dense if and only if
the set of vectors 
bk

j�k=1,. . .,d
j=1,. . .,mk spans Rn−d. In other words, an

irrational slice, which densely fills the unit cell, is one in
which there are n−d independent incommensurate slice com-
ponents as defined above.
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